Exploring Contextual Models for Chemical Patent Search

Jay Urbain (Computer Science, Milwaukee School of Engineering, US) and Ophir Frieder (Department of Computer Science, Georgetown University, US)


Abstract
 

We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections. The query processing algorithm for patent prior art search uses information extraction techniques to identify candidate entities and distinctive terms from the query patent's title, abstract, description, and claim sections. Structured queries integrating terms and entities in context are automatically generated to test the validity of each section of potentially relevant patents. The system was deployed across 15 Amazon Web Services (AWS) Elastic Cloud Compute (EC2) instances to support efficient indexing and query processing of the relatively large 100G+ collection of chemical patent documents. We evaluated several retrieval models for integrating statistics of candidate entities with term statistics at multiple levels of patent structure to identify relevant patents for prior art search. Our top performing retrieval model integrating contextual evidence from multiple levels of patent structure resulted in bpref measurements of 0.8929 for the prior art search task, exceeding the top results reported from the 2009 TREC Chemistry track.
 

Computer Science, Milwaukee School of Engineering

Department of Computer Science, Georgetown University